研晟考研-以研促教,研精毕智,厚德载晟!
24小时报名热线
13021053105

2025年哈尔滨工业大学数学学院831高等代数硕士研究生考试大纲

作者:研晟考研
2024-10-15 14:23:49
278
来源:哈工大研招网官网
收藏

研晟考研,专注清华北大等985/211名校考研辅导,拥有完善的服务团队,专属定制化的考研备考规划,力争实现每位学子的考研梦、名校梦。

  考试科目名称:高等代数考试科目代码:[831]


  一、考试内容及要求


  (一)多项式


  1.理解数域,多项式,整除,最大公因式,互素,不可约,重因式等概念。了解多项式环,微商,本原多项式,字典排序法,对称多项式,初等对称多项式,齐次多项式,多项式函

数等概念。


  2.掌握整除,带余除法定理,最大公因式定理,互素多项式及不可约多项式的判别与性质,多项式唯一因式分解定理,余式定理,因式定理、代数基本定理,Vieta定理,高斯引理,

Eisenstein判别定理,对称多项式基本定理。


  3.掌握多项式无重因式、多项式相等的判别条件,Lagrange插值公式,复数域、实数域及有理数域上多项式因式分解理论,有理多项式的有理根范围。


  4.掌握辗转相除法,化对称多项式为初等对称多项式的多项式的方法。


  (二)行列式


  1.了解行列式的概念,理解行列式的子式,余子式及代数余子式的概念。


  2.掌握行列式的性质,Cramer法则,Laplace定理,行列式乘法公式。


  3.掌握行列式的计算,并且能运用行列式理论解决相关问题。


  (三)线性方程组


  1.理解向量线性相关,向量组等价,极大无关组,向量组的秩,矩阵的秩,基础解系,解空间等概念。


  2.掌握线性方程组有解判别定理,解的结构,以及求解线性方程组的方法。


  (四)矩阵


  1.理解矩阵的基本概念及其性质,掌握矩阵的线性运算、乘法、转置,以及它们的运算规律。


  2.掌握逆矩阵的性质以及矩阵可逆的充要条件。掌握伴随矩阵的概念与性质。理解矩阵的初等变换及矩阵等价的概念,会求矩阵的秩及逆矩阵。


  3.理解分块矩阵,掌握分块阵的运算及初等变换。


  (五)二次型


  1.掌握二次型的概念及二次型的矩阵表示,二次型秩的概念,二次型的标准形、规范形及惯性定律,掌握用合同变换、正交变换化二次型为标准形的方法。


  2.掌握二次型和对应矩阵的正定、半正定、负定、半负定及其判别法。


  (六)线性空间


  1.理解线性空间,子空间,生成子空间,基底,维数,坐标,过渡矩阵,子空间的和与直和,线性空间同构等概念。


  2.掌握基扩张定理,维数公式。会求基底,维数,坐标,过渡矩阵。


  (七)线性变换


  1.理解线性变换,特征多项式,特征子空间,不变子空间,相似变换,相似矩阵,Jordan标准形,有理标准形,最小多项式等概念。


  2.掌握线性变换的性质,特征值、特征向量的性质,核空间与值域的性质,不变子空间的性质及分解理论。掌握Hamilton-Cayley定理及最小多项式理论。


  3.掌握线性变换与矩阵“互化”的思想方法,并能用于解决相关问题。


  (八)−矩阵


  1.理解−矩阵、可逆−矩阵、−矩阵的行列式因子、不变因子、初等因子等概念,了解−矩阵的标准形。


  2.掌握−矩阵可逆的充要条件,−矩阵等价的充要条件,矩阵相似的充要条件,了解Jordan标准形的理论推导。


  3.会求−矩阵的标准形及不变因子,会求矩阵的Jordan标准形。


  (九)欧几里得空间


  1.掌握内积,欧氏空间,向量长度、夹角、距离,度量矩阵,标准正交基、正交补,正交变换,正交阵,对称变换,同构等概念。


  2.掌握Schmidt正交化方法。掌握标准正交基的性质,正交变换的性质,正交阵的性质,对称变换的性质及标准形。


  3.掌握实对称阵的特征值、特征向量的性质。会用正交相似变换将实对称阵相似(合同)对角化。


  二、试卷结构


  考试时间:180分钟,满分:150分,其中主观题的比例不低于60%。



相关阅读

预约
报名
在线咨询 微信
微信咨询
QQ群
(1)群
(2)群
(3)群
(4)群
常见问题 联系我们

13021053105