研晟考研-以研促教,研精毕智,厚德载晟!
24小时报名热线
13021053105

2025年北京理工大学业务课847 高等代数硕士研究生考试大纲

作者:研晟考研
2024-11-23 13:31:24
175
来源:北京理工大学研究生院官网
收藏

研晟考研,专注清华北大等985/211名校考研辅导,拥有完善的服务团队,专属定制化的考研备考规划,力争实现每位学子的考研梦、名校梦。

  1.考试内容


  1.一元多项式理论:最大公因式与因式分解,重因式,不可约多项式,复数域上的不可约多项式,实数域上的不可约多项式,有理系域上的不可约多项式,多元多项式环。


  2.行列式:行列式的定义,行列式的计算及性质,Laplace展开定理。


  3.线性方程组理论:Cramer法则,Gauss消元法,维向量的线性相(无)关性,向量组的秩和矩阵的秩,线性方程组有解的判别,线性方程组解的结构。


  4.矩阵:矩阵的混合运算,方阵的行列式,矩阵的逆,矩阵的分块,初等矩阵,正交矩阵,欧几里得空间。


  5.矩阵的相抵与相似:矩阵的相抵,广义逆矩阵,矩阵的相似,矩阵的特征值和特征向量,矩阵可对角化的条件,实对称矩阵的对角化。


  6.二次型:二次型及其标准形,实二次形的规范形,正定二次型与正定矩阵。


  7.线性空间:线性空间的结构,子空间以及子空间的交与和,子空间的直和,线性空间的同构,商空间。


  8.线性映射:线性映射及其运算,线性映射的核与象,线性映射的矩阵表示,线性变换的特征值与特征向量,线性变换的不变子空间,Hamilton-Cayle定理,线性变换的最小多项式,幂零变换的结构,线性变换的

Jordan标准形,线性函数与对偶空间。


  9.具有度量的线性空间:双线性函数,欧几里得空间,正交补和正交投影,正交变换与对称变换,酉空间。


  2.考试要求


  ①了解:代数基本定理,复系数与实系数多项式的因式分解定理,高斯引理,广义逆矩阵,线性空间的同构,正交变换。


  ②理解:Laplace展开定理,n维向量的线性相(五)关性,矩阵的秩,矩阵的可逆性,实二次型的分类,线性空间的维数,线性变换的值域与核,线性变换的Jordan标准形。


  ③掌握:行列式的计算,线性方程组解的判别、求解及解的结构,求可逆矩阵的逆矩阵,利用分块方法计算矩阵,求标准正交基,矩阵的对角化,实对称矩阵的对角化,化简二次型的方程,二次形的正(负)定性判别

,求线性空间的维数与基底,基变换与坐标变换,子空间的交与和,子空间的直和,求线性变换的不变子空间,Hamilton-Cayle定理,线性变换的最小多项式,幂零变换的结构,线性变换的Jordan标准形,求线性映射的矩

阵表示,线性映射的特征值与特征向量,双线性函数,正交变换与对称变换,


  3.参考书目


  1.《高等代数》(第二版,上册),丘维声,高等教育出版社,2002年7月


  2.《高等代数》(第二版,下册),丘维声,高等教育出版社,2003年8月



相关阅读

预约
报名
在线咨询 微信
微信咨询
QQ群
(1)群
(2)群
(3)群
(4)群
常见问题 联系我们

13021053105